MACHINE LEARNING BASED NLP
Synopsis:
- SparkNLP
- Working with SpacyML
- Understanding BERT, ELMO and other embeddings
- Deep learning framework (Tensorflow, Keras, and Pytorch)
- Working with CRF, RNN, CNN and (BI)LSTM
- Backpropagation
- Basic Activation functions – Linear, Sigmoid, ReLu, Softmax
- Basic Loss functions – Cross Entropy, RMSE, MAE.
Resources:
- Deep learning
- https://www.youtube.com/watch?v=tpCFfeUEGs8&list=WL&index=7
- https://www.coursera.org/learn/sequence-models-in-nlp
- https://www.geeksforgeeks.org/named-entity-recognition/
- https://www.frontiersin.org/articles/10.3389/fcell.2020.00673/full – research paper
- Word embedding
- BERT embedding
- GLOVE embedding
- https://drive.google.com/file/d/1tpL4nytANEB63CKUbGZ6222KkEcaB-ne/view?usp=sharing – Natural Language Processing with Python by Steven Bird, Ewan Klein, and Edward Loper
- https://drive.google.com/file/d/16DSsjhUoCBfoA395g6kiGFEE9eke5W7C/view?usp=sharing – Fundamentals of Clinical Data Science by Pieter Kubben, Michel Dumontier, Andre Dekker
- https://drive.google.com/file/d/1289hEauY37xHKWdP53L6r6SECSI5pTXK/view?usp=sharing – Natural Language Annotation for Machine Learning by James Pustejovsky and Amber stubbs