MACHINE LEARNING BASED NLP

Synopsis: 

  • SparkNLP 
  • Working with SpacyML 
  • Understanding BERT, ELMO and other embeddings 
  • Deep learning framework (Tensorflow, Keras, and Pytorch) 
  • Working with CRF, RNN, CNN and (BI)LSTM 
  • Backpropagation 
  • Basic Activation functions – Linear, Sigmoid, ReLu, Softmax 
  • Basic Loss functions – Cross Entropy, RMSE, MAE. 

Resources: